Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 7 de 7
1.
Neurol Neuroimmunol Neuroinflamm ; 11(3): e200208, 2024 May.
Article En | MEDLINE | ID: mdl-38662979

BACKGROUND AND OBJECTIVES: Vidofludimus calcium suppressed MRI disease activity compared with placebo in patients with relapsing-remitting multiple sclerosis (RRMS) in the first cohort of the phase 2 EMPhASIS study. Because 30 mg and 45 mg showed comparable activity on multiple end points, the study enrolled an additional low-dose cohort to further investigate a dose-response relationship. METHODS: In a randomized, placebo-controlled, phase 2 trial, patients with RRMS, aged 18-55 years, and with ≥2 relapses in the last 2 years or ≥1 relapse in the last year, and ≥1 gadolinium-enhancing brain lesion in the last 6 months. Patients were randomly assigned (1:1:1) vidofludimus calcium (30 or 45 mg) or placebo in cohort 1 and vidofludimus calcium (10 mg) or placebo (4:1) in cohort 2 for 24 weeks. The primary end point was the cumulative number of combined unique active (CUA) lesions at week 24. Secondary end points were clinical outcomes and safety. RESULTS: Across cohorts 1 and 2, 268 patients were randomized to placebo (n = 81), 10 mg (n = 47) vidofludimus calcium, 30 mg (n = 71) vidofludimus calcium, or 45 mg (n = 69) vidofludimus calcium. The mean cumulative CUA lesions over 24 weeks was 5.8 (95% CI 4.1-8.2) for placebo, 5.9 (95% CI 3.9-9.0) for 10 mg treatment group, 1.4 (95% CI 0.9-2.1) for 30 mg treatment group, and 1.7 (95% CI 1.1-2.5) for 45 mg treatment group. Serum neurofilament light chain decreased in a dose-dependent manner. The number of patients with confirmed disability worsening after 24 weeks was 3 (3.7%) patients receiving placebo and 3 (1.6%) patients receiving any dose of vidofludimus calcium. Treatment-emergent adverse events occurred in 35 (43%) placebo patients compared with 11 (23%) and 71 (37%) patients in the 10 mg or any dose of vidofludimus calcium groups, respectively. The incidence of liver enzyme elevations and infections were similar between placebo and any dose of vidofludimus calcium. No new safety signals were observed. DISCUSSION: Compared with placebo, vidofludimus calcium suppressed the development of new brain lesions with daily doses of 30 mg and 45 mg, but not 10 mg, establishing the lowest efficacious dose is 30 mg. CLASSIFICATION OF EVIDENCE: This study provides Class II evidence that among adults with active RRMS and ≥1 Gd+ brain lesion in the past 6 months, the cumulative number of active lesions decreased with vidofludimus calcium. TRIAL REGISTRATION INFORMATION: ClinicalTrials.gov (NCT03846219) and EudraCT (2018-001896-19).


Dose-Response Relationship, Drug , Multiple Sclerosis, Relapsing-Remitting , Humans , Adult , Male , Female , Multiple Sclerosis, Relapsing-Remitting/drug therapy , Multiple Sclerosis, Relapsing-Remitting/diagnostic imaging , Middle Aged , Young Adult , Double-Blind Method , Adolescent
2.
World J Gastrointest Pathophysiol ; 11(6): 114-130, 2020 Dec 12.
Article En | MEDLINE | ID: mdl-33362939

The intestinal barrier is a complex and well-controlled physiological construct designed to separate luminal contents from the bowel wall. In this review, we focus on the intestinal barrier's relationship with the host's immune system interaction and the external environment, specifically the microbiome. The bowel allows the host to obtain nutrients vital to survival while protecting itself from harmful pathogens, luminal antigens, or other pro-inflammatory factors. Control over barrier function and the luminal milieu is maintained at the biochemical, cellular, and immunological level. However, disruption to this highly regulated environment can cause disease. Recent advances to the field have progressed the mechanistic understanding of compromised intestinal barrier function in the context of gastrointestinal pathology. There are numerous examples where bowel barrier dysfunction and the resulting interaction between the microbiome and the immune system has disease-triggering consequences. The purpose of this review is to summarize the clinical relevance of intestinal barrier dysfunction in common gastrointestinal and related diseases. This may help highlight the importance of restoring barrier function as a therapeutic mechanism of action in gastrointestinal pathology.

3.
Int J Toxicol ; 37(2): 144-154, 2018.
Article En | MEDLINE | ID: mdl-29587557

Polycystic kidney disease is characterized by the progressive development of kidney cysts and declining renal function with frequent development of cysts in other organs including the liver. The polycystic kidney (PCK) rat is a rodent model of polycystic liver disease that has been used to study hepatorenal disease progression and evaluate pharmacotherapeutic interventions. Biomarkers that describe the cyst progression, liver impairment, and/or hepatic cyst burden could provide clinical utility for this disease. In the present study, hepatic cyst volume was measured by magnetic resonance imaging in PCK rats at 12, 16, and 20 weeks. After 20 weeks, Sprague Dawley (n = 4) and PCK (n = 4) rats were sacrificed and 42 bile acids were analyzed in the liver, bile, serum, and urine by liquid chromatography coupled to tandem mass spectrometry. Bile acid profiling revealed significant increases in total bile acids (molar sum of all measured bile acids) in the liver (13-fold), serum (6-fold), and urine (3-fold) in PCK rats, including those speciated bile acids usually associated with hepatotoxicity. Total serum bile acids correlated with markers of liver impairment (liver weight, total liver bile acids, total hepatotoxic liver bile acids, and cyst volume [ r > 0.75; P < 0.05]). Based on these data, serum bile acids may be useful biomarkers of liver impairment in polycystic hepatorenal disease.


Bile Acids and Salts/metabolism , Liver/metabolism , Polycystic Kidney Diseases/metabolism , Animals , Biomarkers/metabolism , Disease Models, Animal , Liver/diagnostic imaging , Liver/pathology , Magnetic Resonance Imaging , Male , Polycystic Kidney Diseases/pathology , Rats, Sprague-Dawley
4.
Clin Pharmacol Ther ; 2017 Dec 22.
Article En | MEDLINE | ID: mdl-29271075

The expression of hepatic transporters, including organic anion transporting polypeptides (OATPs) and multidrug resistance-associated proteins (MRPs), is altered in nonalcoholic steatohepatitis (NASH); however, functional data in humans are lacking. In this study, 99m Tc-mebrofenin (MEB) was used to evaluate OATP1B1/1B3 and MRP2 function in NASH patients. Healthy subjects (n = 14) and NASH patients (n = 7) were administered MEB (∼2.5 mCi). A population pharmacokinetic model was developed to describe systemic and hepatic MEB disposition. Study subjects were genotyped for SLCO1B1 variants. NASH increased systemic and hepatic exposure (median ± 2 SE, healthy vs. NASH) to MEB (AUC0-300,blood : 1,780 ± 242 vs. 2,440 ± 775 µCi*min/L, P = 0.006; AUC0-180,liver : 277 ± 36.9 vs. 433 ± 40.3 kcounts*min/sec, P < 0.0001) due to decreased biliary clearance (0.035 ± 0.008 vs. 0.017 ± 0.002 L/min, P = 0.0005) and decreased Vcentral (11.1 ± 0.57 vs. 6.32 ± 1.02 L, P < 0.0001). MEB hepatic CLuptake was reduced in NASH and also in healthy subjects with SLCO1B1 *15/*15 and *1A/*15 genotypes. The pharmacokinetics of drugs that are OATP1B1/1B3 and MRP2 substrates may be substantially altered in NASH.

5.
J Pharm Sci ; 106(9): 2282-2294, 2017 09.
Article En | MEDLINE | ID: mdl-28465155

Liver disease can alter the disposition of xenobiotics and endogenous substances. Regulatory agencies such as the Food and Drug Administration and the European Medicines Evaluation Agency recommend, if possible, studying the effect of liver disease on drugs under development to guide specific dose recommendations in these patients. Although extensive research has been conducted to characterize the effect of liver disease on drug-metabolizing enzymes, emerging data have implicated that the expression and function of hepatobiliary transport proteins also are altered in liver disease. This review summarizes recent developments in the field, which may have implications for understanding altered disposition, safety, and efficacy of new and existing drugs. A brief review of liver physiology and hepatic transporter localization/function is provided. Then, the expression and function of hepatic transporters in cholestasis, hepatitis C infection, hepatocellular carcinoma, human immunodeficiency virus infection, nonalcoholic fatty liver disease and nonalcoholic steatohepatitis, and primary biliary cirrhosis are reviewed. In the absence of clinical data, nonclinical information in animal models is presented. This review aims to advance the understanding of altered expression and function of hepatic transporters in liver disease and the implications of such changes on drug disposition.


Liver Diseases/metabolism , Liver/metabolism , Pharmaceutical Preparations/metabolism , Animals , Humans , Membrane Transport Proteins/metabolism
6.
Drug Metab Dispos ; 44(6)2016 06.
Article En | MEDLINE | ID: mdl-27013400

Tolvaptan is a selective V2-receptor antagonist primarily metabolized by CYP3A. The present study investigated the hepatocellular disposition of tolvaptan and the generated tolvaptan metabolites, DM-4103 and DM-4107, as well as the potential for drug-drug interaction (DDIs) with metabolic and transport proteins in sandwich-cultured human hepatocytes (SCHH). Tolvaptan was incubated with SCHH and quantified by LC-MS/MS. Pioglitazone, verapamil, MK-571 and elacridar were used as inhibitors to investigate mechanisms of transport and metabolism of tolvaptan and metabolites. Taurocholate (TCA), pravastatin, digoxin, and metformin were used as transporter probes to investigate which transport proteins were inhibited by tolvaptan and metabolites. Cellular accumulation of tolvaptan (0.15-50 µM), DM-4103 and DM-4107 in SCHH was concentration dependent. Tolvaptan accumulation (15 µM) in SCHH was not altered markedly by 50 µM pioglitazone, verapamil or MK-571, or 10 µM elacridar. Co-incubation of tolvaptan with pioglitazone, verapamil, MK-571 and elacridar reduced DM-4107 accumulation by 45.6, 79.8, 94.5 and 23.0%, respectively, relative to control. Co-incubation with increasing tolvaptan concentrations (0.15-50 µM) decreased TCA (2.5 µM) cell+bile accumulation and the TCA biliary excretion index (BEI; from 76% to 51%), consistent with inhibition of the bile salt export pump (BSEP). Tolvaptan (15 µM) had no effect on the cellular accumulation of 2.5 µM pravastatin or metformin. Digoxin cellular accumulation increased and the BEI of digoxin decreased from 23.9% to 8.1% in the presence of 15 µM tolvaptan, consistent with inhibition of P-glycoprotein (P-gp). In summary, SCHH studies revealed potential metabolic- and transporter-mediated DDIs involving tolvaptan and metabolites.

7.
Toxicol Sci ; 149(1): 237-50, 2016 Jan.
Article En | MEDLINE | ID: mdl-26507107

Tolvaptan is a vasopressin V(2)-receptor antagonist that has shown promise in treating Autosomal Dominant Polycystic Kidney Disease (ADPKD). Tolvaptan was, however, associated with liver injury in some ADPKD patients. Inhibition of bile acid transporters may be contributing factors to drug-induced liver injury. In this study, the ability of tolvaptan and two metabolites, DM-4103 and DM-4107, to inhibit human hepatic transporters (NTCP, BSEP, MRP2, MRP3, and MRP4) and bile acid transport in sandwich-cultured human hepatocytes (SCHH) was explored. IC(50) values were determined for tolvaptan, DM-4103 and DM-4107 inhibition of NTCP (∼41.5, 16.3, and 95.6 µM, respectively), BSEP (31.6, 4.15, and 119 µM, respectively), MRP2 (>50, ∼51.0, and >200 µM, respectively), MRP3 (>50, ∼44.6, and 61.2 µM, respectively), and MRP4 (>50, 4.26, and 37.9 µM, respectively). At the therapeutic dose of tolvaptan (90 mg), DM-4103 exhibited a C(max)/IC(50) value >0.1 for NTCP, BSEP, MRP2, MRP3, and MRP4. Tolvaptan accumulation in SCHH was extensive and not sodium-dependent; intracellular concentrations were ∼500 µM after a 10-min incubation duration with tolvaptan (15 µM). The biliary clearance of taurocholic acid (TCA) decreased by 43% when SCHH were co-incubated with tolvaptan (15 µM) and TCA (2.5 µM). When tolvaptan (15 µM) was co-incubated with 2.5 µM of chenodeoxycholic acid, taurochenodeoxycholic acid, or glycochenodeoxycholic acid in separate studies, the cellular accumulation of these bile acids increased by 1.30-, 1.68-, and 2.16-fold, respectively. Based on these data, inhibition of hepatic bile acid transport may be one of the biological mechanisms underlying tolvaptan-associated liver injury in patients with ADPKD.


Antidiuretic Hormone Receptor Antagonists/toxicity , Benzazepines/toxicity , Carrier Proteins/antagonists & inhibitors , Chemical and Drug Induced Liver Injury/etiology , Membrane Glycoproteins/antagonists & inhibitors , Animals , Benzazepines/metabolism , CHO Cells , Cricetulus , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Multidrug Resistance-Associated Protein 2 , Multidrug Resistance-Associated Proteins/physiology , Polycystic Kidney, Autosomal Dominant/drug therapy , Taurocholic Acid/metabolism , Tolvaptan
...